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Abstract. The case is made for modifying the equations of general relativity so as to permit a time-variable 
gravitational 'constant'. 

1. Introduction 

The case has been made for a time-dependent gravitational constant in order to explain 
the order of magnitude of some numbers which characterize our Universe (Wesson, 
1980). However, this hypothesis would have disturbing consequences including the 
following: 

(a) A time-dependent gravitational constant would imply a time variation of the laws 
of nature. Nature would no longer be 'conserved' under a time translation. 

(b) Einstein's tensor G~ has been constructed to be divergenceless so as to ensure 
the divergenceless of the matter tensor Tb a. This property is required for conservation 
laws considerations. However, with a variable gravitational 'constant', kT~  would still 
be divergenceless but T# would then have a divergence different from zero. 

(c) Einstein's equations would cease to be covariant. 
(d) The elegant logical arguments that lead to the formulation of Einstein's equations, 

would be invalidated. 

The elegance of Dirac's conjecture cannot be denied and, though the LNH (large 
numbers hypothesis) could be fundamentally untrue and simply a coincidence, one 
should not reject it without exhausting the possibility of addressing and resolving points 
(a) to (d) above. 

It should be noted that objections (a) and (c) apply only to a direct time dependency 
of k. They would not hold if k were a scalar function of the 4 coordinates which, in a 
homogeneous expanding universe, would vary with time only. We present two ways in 
which this could be accomplished. 

Objection (b) would still hold unless we can accept k T  and not T as the real physical 
tensor to be subject to conservation laws. 
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2. Justification for Modifying General Relativity 

In our view, there may be more compelling reasons than the LNH for modifying 
Einstein's equations of general relativity. We consider two such reasons having to do 
with centrifugal force and numerical equalities. 

2.1. G E N E R A L  R E L A T I V I T Y  A N D  C E N T R I F U G A L  F O R C E S  

The Einstein equations being covariant, it follows that whether the Universe turns about 
an observer or whether an observer turns about himself, the centrifugal forces would 
be the same in both cases. This is not as straightforward a statement as it seems to be. 
If the two situations are related by a coordinate transformation, then we are facing a 
single physical situation expressed in two different frames of reference. 

The problem becomes much more interesting when it addresses the relation between 

the following two different physical situations. In the first case, the observer rotates 
relative to the masses which are fixed relative to asymptotically inertial frames. In the 
second case, the masses rotate relative to the observer who is fixed relative to asymptoti- 

cally inertial frames. 
The first case is that which generates the well-known centrifugal forces. The second 

case was analysed by Thirring and Lense (1918). They found that a spherical shell 
rotating about an observer in the background of asymptotically fixed inertial frames, 
would produce a centrifugal force with the correct dependence on distance and angular 
velocity, but with a strength which depends on M / R ,  M being the mass of the spherical 

shell and R its radius. 
In order tbr the centrifugal forces to be identical in the two cases, the following relation 

must hold (Moller, 1972): 

k = 4rcR/Mc 2 . (2.1) 

This relation holds in Einstein's static universe but does not hold classically in an 
expanding universe since it equates a constant k to the variable 4rcR/Me 2. 

2.2. U N L I K E L Y  C O I N C I D E N C E  

At the time of the Big Bang, the right-hand side of Equation (2.1) is expected to have 
been close to zero, and thereafter has been growing with time as the Universe expands. 
At some time in the history of a big bang Universe, Equation (2.1) will be momentarily 
satisfied, and it so happens that time is . . .  NOW. 

Equation (2.1) can be rewritten as 

k = 2HZ/(xpc 4) (2.2) 

in which H is the Hubble constant; p, the mean density of matter; and c, the speed of 
light. We moved from Equation (2.1) to Equation (2.2) by replacing M by 2prc2R 3 

(Tolman, 1934) and R by e /H  (the value for which the speed of recession equals that 

of light). 
If we take for p the value 1.4 x 10-3o c.g.s, units, for h the value 2.5 x 10-18 
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(75 km s -  1 Mpc-  ~), for c the value 3.0 x 101~ the fight-hand side of Equation (22) 
gives us 3.4 x 10-48 which, in view of the uncertainties in p and H, is in surprisingly 
good agreement with the measured value of 2.076 x 10- 48 (Lang, 1980). Summarizing, 
we see that there are good reasons to expect Equation (2.1) to be true (reciprocity of 
rotational effects) and, it does happen to hold now. It is, therefore, natural to suspect 
that Equation (2.1) is indeed a relation holding for a l l  times and not, by pure chance, 
just at our time. 

In this letter we show that it is possible to modify Einstein's equations so that 
Equation (2.1) is not an ephemeral relation. Our efforts tend also to meet the objections 
(a)-(d) mentioned before. We note that the values of p and H remain uncertain and 
controversial. There is growing evidence that luminous matter constitutes only a small 
fraction of the total (Maddox, 1984) and that the appropriate numerical value may be 
10, or more, times larger than that given above. The value of H could be as low as 
5 0 k m s - l M p c  I (Sandage and Tammann, 1982, 1984) or as high as 
115 km s-  i Mpe-  1 (de Vaucouleurs and Peters, 1986). These uncertainties do not 
affect our argument; the equality identified above still holds to order of magnitude. 

3. General Relativity in Non-Dimensional Units 

Consider Einstein's equations 

G ( ~  = - k ( ~  ~  , (3.1) 

in which the superscript (0) indicates the usual equations of Einstein for general 
relativity, expressed in the usual cosmological units. With a change of units 
Equation (3.1) becomes 

G(1)a = - -  k ( 1 )  T(b I)a. (3.2) 

Instead of changing units, we could proceed with a physical scaling up or down of the 
lengths and densities involved in Equation (3.1) and we would have obtained 

G~ )a = - -  k ( 2 ) T ( 2 ) a  ( 3 . 3 )  

with 

T (2)= T (1) while k (2)=k (~ 

The last of the two relations is due to the fact that there was no change of units in moving 
from k (~ to k (2~. Equations (3.1) and (3.2) represent the same Universe in different units. 
Equation (3.3) represents a Universe in which, at an initial time, the relative distances 
as they compare between themselves, and the relative densities as they compare between 
themselves, are the same as in Equation (3.1). Nevertheless, Equation (3.3) represents 
a different Universe. 

In moving from the Universe described by Equation (3.1) to that described by 
Equation (3.3), it is impossible to notice a physical difference unless something remains 
unaffected by the scaling of lengths and densities. If, for instance, we kept unchanged 
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the mass of a proton and its Compton wavelength, we could use them as units and find 
out that there was a real physical scaling up or down. But a proton is not an integral 
part of general relativity and, in its absence (or in the absence of any other fixed 
reference), one should expect that if all lengths, for instance including the measuring 
ones, were replaced by lengths twice as long, this would have undetectable physical 
effects. However, comparing Equations (3.1) and (3.3) shows that such is not the case. 
To avoid this situation (supposing that it should be avoided) we look for untis of length 
and density of matter determined by the distribution of masses. Expressed in those units, 
Einstein's equations would not need a dimensional constant k to relate geometry to 
matter since both would be non-dimensional. 

Let us therefore, express all lengths in terms of the radius R of the Universe, and all 
matter densities in terms of the mean density of matter in the Universe. Einstein's 
equations become (taking the non-dimensional constant equal to unity) 

with 

G(b 3 ) a  = - -  Z ( 3 ) a  , ( 3 . 4 )  

G(b3)a=RZG(b ~ and r~ 3)"= r(b~ c2. (3.5) 

Replacing G (3) and T (3) by their expressions in (3.5) we obtain 

G~~ = - l (R2pcZ)T(b ~ . (3.6) 

We are getting back the original equations of general relativity except for k not being 
constant and being given by an expression essentially consistent with Equation (2.1) 
(replace pby M/R3). Equations (3.4) and (3.6) are less general than Einstein's equations. 
They presuppose a spherical, finite universe and describe the evolution of the gravi- 
tational field within such a universe. We also note that in Equation (3.6) it is RZpT (~ 

which is divergenceless and not T (~ 

4. An Alternative Solution 

We are considering an alternative to Einstein's equations. It is based on covariant 
equations, accepts Einstein's equations as a first approximation, and leads to a variable 
gravitational constant. It is expressed by the equations 

[gUV(G~)-I T~];.v : Tab. (4.1) 

The left-hand side of Equation (2.1) is the covariant Laplacian of 

(GD-1 T~. 

In a quasi-fiat space, Equation (4.1) can be approximated by 

~(Gg) -a Tc b = Tab. (4.2) 

If T is zero at infinite distance or if we consider the waveless solution of Equation (4.1), 
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the solution of Equation (4.2) is then given by 

-1Tc b = _(4/z)-1 f (0 -1Ta  bdv. (Gg) (4.3) 

By contracted multiplication with Gf we obtain 

= - ( 4 n ) - t ~ r - l T  r? dvGf , (4.4) 
i /  

in which r is the time-retarded distance. 
Equation (4.4) would be identical to Einstein's equations if 

k-1  = (4n) -1 f r - lTdv"  (4.5) 

In a homogeneous universe, k, as defined by Equation (4.5), would vary little in space 
while varying with the expansion of the Universe in time, as we show below. 

The integral 

f r - l T d v  

is similar to a gravitational potential and, in a homogeneous universe, is of the order 
of c2M/R in which M is the mass of the Universe and R its radius. If we replace the 
integral by this expression, Equation (4.5) becomes 

k -1 = (4re)- 1M/r or k = 4nR/(Mc) 2. (4.6) 

It is worth noting that k does not figure at all in Equation (4.1). As defined in 
Equation (4.6), its value can be predicted by the theory. 

5. Singularities 

The value of k as defined by Equation (3.4) varies very little from point to point. This 
is due to the fact that the contributions to its value as given in Equation (4.5) by any 
close-by object, are negligible compared to the homogeneous contribution of the whole 
Universe. Near the surface/edges of normal planets, stars, and galaxies, the universal 
value of k is decreased by less than one part in 10 6, o r  SO. However, this ceases to be 
true close to a singularity. If  we define by k o the contribution of all the Universe (except 
the singularity) and if the point-singularity is that of a mass m and if r indicates the 
distance between a point and the singularity, then according to Equation (3.3), we 
should have 

k - 1  : k o  1 ..}_ (4n)- i  (mc2/r). (5.1) 

The Schwarzschild expression (1 - 2mr- 1) is, in our units, 

1 - 2mkc2(8ur) -1 or 1 - mkc2(4nr) -1 (5.2) 
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If we replace k in (5.2) by its value in Equation (3.6) we obtain for the Schwarzschild 
term 

1 - m c 2 k o / ( 4 n r  + m c 2 k o ) .  (5.3) 

As long as r is different from zero, this expression remains positive. It becomes zero 
only at the singularity itself. The Schwarzschild singularity has disappeared. We must 
point out that the preceding treatment for the singularity is invalid since, at a short 
distance from it, the assumptions that allowed us to derive Equations (4.4) from 
Equations (4.1) are no longer valid. The treatment, though lacking in rigor, does indicate 
that singular masses might not necessarily produce a singular surface way from the 
singularity. 

Equation (4.1) is not the only covariant equation leading to a variable gravitational 
'constant'. The following equation leads to a variable gravitational tensor 'constant' 

[gUVG2 lCTcb]; uv = Tb"  (5.4) 

Equation (4.5) then becomes 

(4g) -1 f r - l T f f d v  (5.5) k ~  la 

so that, instead of Einstein's equations, we obtain in our approximation 

k b l a a b  = - Te a . (5.6) 

In the spherically-symmetric case expressed in spherical coordinates, the value of k 
at any time would be different for the expression of the radial pressure as compared to 
the expression for the lateral pressure or the density. This, unless it so happens that 

Tea = c t te~,  (5.7) 

which would also means that p + p = 0. 
It is to be noted that precisely such a relation is given by the cosmological constant 

and was suggested by Moller (1972) to eliminate 'side-effects' in Thirring's compu- 
tations. 

6. The Nature and Consequences of Variable G 

According to Equation (4.6) the gravitational constant increases with time. Dirac 
expected it to decrease. The variability of the 'constant' would have dramatic effects on 
cosmology. According to Equation (3.5), the gravitational constant was much lower in 
the early stages of the Universe. These stages may, therefore, have lasted for a shorter 
time than in the Einsteinian case, since the expansion was resisted by smaller attractive 
forces. Likewise, the gravitational forces are increasing with time as compared to the 
Einsteinian predicted values. This may increase the likelihood of a closed or oscillating 
universe. 

It is, however, in the field of gravitational light deflection that the effect of the variation 
would be easiest to observe. Close to a singularity the deflection would be smaller than 
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predicted by Einstein's equations. Since the pioneering work of Eddington (1919) and 
others, many attempts have been made to measure the gravitational light deflection. The 
classical approach involved measuring the deflection of visible radiation from 
background stars near the limb of the eclipsed Sun. The most precise results have been 
obtained during recent decades at radio wavelengths while monitoring man-made 
satellites in heliocentric orbits and observing galactic and extragalactic radio sources in 
the solar background. This work has been frequently discussed and reviewed in the 
literature, and the most reliable results appear to be in very close agreement with the 
predictions of classical general relativity (Fomalont and Sramek, 1975). 

The angular deflection of electromagnetic radiation is proportional to the gravitational 
constant (Lang, 1980; Misner etal., 1973) and, therefore, to k. In principle then, a 
time-dependence of the gravitational 'constant' will reveal itself in, for example, the 
recently detected gravitational lenses which involve quasars and distant - in time as well 
as space - galaxies. In practice, the difficulties involved in disentangling this effect from 
other factors which must be considered in interpreting the observations are currently 
insurmountable. 

7. Conclusions 

A relation required for reciprocity of rotational effects and which is reasonably satisfied 
today, may represent a fundamental property of nature. Using this relation, it has been 
shown that it is possible to formulate solutions to Einstein's equations that overcome 
some of the objections raised against a variable gravitational constant. The proper 
theoretical way, if such exists, may still remain to be found. While we have demonstrated 
that variable G can be accommodated within a modified theory of general relativity - 
and that was the purpose of this exercise - it remains true that there is very little 
convincing observational evidence for or against a time-variable gravitational constant. 
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